Birt-Hogg-Dubé Syndrome with Clear Cell Renal Cell Carcinoma in a Chinese Family

Zhichun Lin¹, Kenan Gong²⁺, Bo Pang⁴, Changqing Zeng² and Dake Zhang²

Abstract

Birt-Hogg-Dubé syndrome (BHDS) is a rare autosomal dominant genodermatosis that presents as a clinical triad including follicular hamartomas, renal neoplasms and lung cysts associated with an increased risk of pneumothorax. FLCN gene defects have been identified as being responsible for BHDS. We herein report the case of a 67-year-old woman with the full-blown BHDS phenotype, characterized by skin lesions, multiple lung bullae and renal neoplasms. In her family history, one of the patient’s sons exhibited a similar phenotype, without renal neoplasms. Due to the relatively late age of onset of renal neoplasms among variable BHDS phenotypes, follow-up imaging is recommended for the son who has not yet developed renal neoplasms.

Key words: Birt-Hogg-Dubé syndrome, folliculin, lung bullae, pneumothorax, renal neoplasm

(Intern Med 53: 2825-2828, 2014)
(DOI: 10.2169/internalmedicine.53.2814)

Introduction

Birt-Hogg-Dubé syndrome (BHDS) is a rare autosomal dominant genodermatosis first reported by Birt, Hogg and Dubé in 1977 (1). It is characterized by a clinical triad including follicular hamartomas, pulmonary cysts and an increased risk of developing kidney tumors (2). The combination of these three phenotypic manifestations may vary among affected family members (3). As many as 85% of patients develop pulmonary cysts, with or without spontaneous pneumothorax, and the penetrance for skin lesions is approximately 80%. However, only 30% of BHDS patients develop renal neoplasms, the most threatening manifestation of this syndrome (4-6). A series of renal tumor types has been reported, including hybrid oncocytic/chromophoberal renal tumors, chromophobe renal cell carcinoma, clear cell renal cell carcinoma and oncocytoma, at frequencies of 50%, 34%, 9% and 5%, respectively (7). Moreover, the development of clinical features appears to be age-related (8). Lung symptoms may occur as young as 7 years of age, whereas skin lesions usually develop in the patient’s 20’s or 30’s (9).

In contrast, the onset of BHDS-associated renal tumors primarily occurs after 40 years of age (2).

BHDS results from the presence of germline mutations in the FLCN gene on 17p11.2. Mutations have been found along the entire coding region of the FLCN gene, and duplication/deletion of cytosine in the polycytosine tract in exon 11 has recurrently been observed as a mutational hotspot (3). Moreover, most FLCN germline mutations are thought to produce truncated folliculin.

In this study, we report a Chinese family affected by BHDS in whom a germline mutation in the gene FLCN was detected on a mutation analysis.

Case Report

A two-generation Chinese family with three subjects, a mother and her two sons, was enrolled in a clinical study and FLCN germline mutation analysis. The index patient was a 67-year-old woman with multiple dome-shaped papules on the skin. An abdominal computed tomography (CT) scan showed bilateral, multiple circular and oval high-density masses predominating in the kidneys, and a further
However, most cases involved Caucasians, with only two BHDS subjects. However, the elder son, clinically congruous mutation c.1153 C>T in exon 10 was detected in the observed in all three family members (Table). A heterozygous pneumothorax documented on CT scans of the chest. Among these variants, five were reported SNPs and region of 14 exons led to the identification of six variants in covering the entire coding sequence and flanking intron re-

evaluation of a surgical biopsy demonstrated the histologic features of clear cell renal cell carcinoma (Fig. 1). Imaging of the chest with CT disclosed multiple bilateral lung bullae (Fig. 2). Of the two other subjects, the 33-year-old younger son presented with multiple pale dome-shaped papules on his neck (Fig. 3), as well as cystic lung lesions with spontaneous pneumothorax documented on CT scans of the chest. The 40-year-old elder son was classified as BHDS-unaffected, as he showed no indications of BHDS-affected skin manifestations usually appear in individuals in their 20’s and 30’s (12). In addition, lung cysts carry a 50-fold higher risk for pneumothorax, and the results obtained by Toro et al. suggest that the median age of onset of pneumothorax is 38 years (11). In contrast, BHDS-associated renal tumors usually exhibit a relatively later onset. Zbar et al. studied 223 members of 33 BHDS families and demonstrated that the median age at diagnosis of renal cancer in the patient group was 51 years (2). Similar results have been reported by Schmidt et al. in a study of 187 BHDS-affected individuals (3). This far, over 400 BHDS pedigrees have been reported. However, most cases involved Caucasians, with only two

Discussion

Previous reports have shown that phenotypic manifestations are variably combined in BHDS-affected patients (3). As reported by Schmidt et al., up to 80% of patients with BHDS have skin lesions. Many researchers have indicated that lung cysts are the most common manifestations of BHDS, noted in more than 85% of patients (10, 11). It is believed that lung cysts increase the risk of pneumothorax due to rupture of a cyst on the surface of the lung. Approximately 24% of patients screened for lung cysts have a history of spontaneous pneumothorax, as investigated by Toro et al. (11). Compared to the other manifestations of BHDS, the occurrence of renal tumors is relatively low, likely between 12-34%, according to different studies (10). In spite of its relatively low prevalence, clinical diversity is observed in BHDS-associated renal tumors, primarily including hybrid oncocytic/chromophobe tumors (50%) and chromophobe renal cell carcinoma (34%) (7).

Recent evidence also suggests that the development of BHDS-associated features is age-related (8). For example, skin manifestations usually appear in individuals in their 20’s and 30’s (12). In addition, lung cysts carry a 50-fold higher risk for pneumothorax, and the results obtained by Toro et al. suggest that the median age of onset of pneumothorax is 38 years (11). In contrast, BHDS-associated renal tumors usually exhibit a relatively later onset. Zbar et al. studied 223 members of 33 BHDS families and demonstrated that the median age at diagnosis of renal cancer in the patient group was 51 years (2). Similar results have been reported by Schmidt et al. in a study of 187 BHDS-affected individuals (3).

Thus far, over 400 BHDS pedigrees have been reported. However, most cases involved Caucasians, with only two
patients from Chinese families. In several analyses of Asian BHDS families, cases of renal neoplasms were found to be rare (13-18). In the present Chinese BHDS family, one of the two affected individuals, the 67-year-old index patient, met the criteria for the full-blown BHDS clinical triad, including multiple skin lesions, pulmonary bullae and clear cell renal cell carcinoma. To our knowledge, this is the first report of a Chinese BHDS pedigree with renal neoplasms and the fifth report of Asian BHDS cases involving all three phenotypes (19).

At present, it is thought that BHDS has only one causative gene, FLCN, with various mutations having been identified along the entire length of the coding region (4). Although the detection of mutations in this gene is a critical

<table>
<thead>
<tr>
<th>dbSNP</th>
<th>Genomic position</th>
<th>mRNA position</th>
<th>Location or ΔAA</th>
<th>Alleles†</th>
<th>Minor Allele</th>
<th>MAF in CHB</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1736209</td>
<td>17,140,485</td>
<td>c.-487</td>
<td>5' UTR</td>
<td>G>C</td>
<td>G</td>
<td>0.17</td>
</tr>
<tr>
<td>rs1708629</td>
<td>17,140,297</td>
<td>c.-299</td>
<td>5' UTR</td>
<td>C>T</td>
<td>C</td>
<td>0.39</td>
</tr>
<tr>
<td>rs1736219</td>
<td>17,127,471</td>
<td>c.397-14</td>
<td>Intron 5</td>
<td>C>T</td>
<td>C</td>
<td>0.39</td>
</tr>
<tr>
<td>rs3744124</td>
<td>17,124,815</td>
<td>c.871+36</td>
<td>Intron 8†</td>
<td>G>A</td>
<td>A</td>
<td>0.19</td>
</tr>
<tr>
<td>rs8065832</td>
<td>17,122,327</td>
<td>c.1062+6</td>
<td>Intron 9</td>
<td>C>T</td>
<td>C</td>
<td>0.35</td>
</tr>
</tbody>
</table>

ΔAA: change in amino acid
MAF: minor allele frequency
CHB: samples from Han Chinese in Beijing, China studied in Hapmap project
†Referenced to the positive strand and folliculin isoform 1 [GenBank:NM_144997]
*Referenced to chromosome 17 on the Human Feb. 2009 (hg19) assembly
‡p.Gly303Arg in isoform 2 [GenBank:NM_144606]
Thus far, no particular genotype-phenotype correlations have been confirmed (3, 10, 20). Furthermore, Kunogi et al. suggested that there are population differences in the mutation spectrum of FLCN (13). These authors found that Caucasian patients tended to have c.1278dupC or c.1278delIC in the mononucleotide tract of eight cytosine residues in exon 11. Meanwhile, c.1347_1353dupCCACCCT in exon12 and c.1533_1536delGATG in exon13 are the most frequently reported mutations in Japanese patients (13, 18).

The mutation observed in this family, c.1153 C>T, was predicted to truncate the protein product. This is the first report of this mutation in a Chinese family, although it was recently documented in the FLCN mutation database ina Japanese case (21). Although all patients in the present family had this substitution, the younger son did not have BHDS-associated renal tumors, as the most threatening and relatively late-onset clinical phenotype (4-6). Similar results have also been found in Asian populations, and Kuroda et al. indicated that BHDS-associated renal tumors often occur with late onset in Japanese subjects (22). Therefore, we cannot eliminate the possibility that the present 33-year-old son may also develop renal neoplasms in his advanced age; hence, the use of annual CT or MRI scans for renal neoplasm monitoring is recommended for this patient.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

This work was supported by funding from the Chinese Academy of Sciences (KJZD-EW-L06-2 to CZ).

Zhichun Lin and Kenan Gong contributed equally to this work.

References