Serine 62 is a phosphorylation site in folliculin, the Birt–Hogg–Dubé gene product

Lu Wang a, Toshiyuki Kobayashi a, Xianghua Piao a, Masatoshi Shiono a, Yumiko Takagi b, Reiko Mineki c, Hikari Taka c, Danqing Zhang c, Masaaki Abe a, Guodong Sun a, Yoshiaki Hagiwara d, Kazuo Okimoto e, Izumi Matsumoto f, Mami Kouchi f, Okio Hino a,*

a Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
b Respiratory Medicine, Juntendo University School of Medicine, Tokyo 113-8421, Japan
c Division of Proteomics and BioMolecular Science, Juntendo University School of Medicine, Tokyo 113-8421, Japan
d Research and Development, Immuno-Biological Laboratories Co., Ltd., Fujioka-shi, Gunma 375-0005, Japan
e Research Administration, Dainippon Sumitomo Pharma Co., Ltd., Osaka 564-0053, Japan
f Safety Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., Osaka 554-0022, Japan

Article info
Article history:
Received 29 July 2009
Revised 13 October 2009
Accepted 9 November 2009
Available online 13 November 2009
Edited by Berend Wieringa

Abstract
Recently, it was reported that the product of Birt–Hogg–Dubé syndrome gene (folliculin, FLCN) is directly phosphorylated by 5′-AMP-activated protein kinase (AMPK). In this study, we identified serine 62 (Ser62) as a phosphorylation site in FLCN and generated an anti-phospho-Ser62-FLCN antibody. Our analysis suggests that Ser62 phosphorylation is indirectly up-regulated by AMPK and that another residue is directly phosphorylated by AMPK. By binding with FLCN-interacting proteins (FNIP1 and FNIP2/FNIPL), Ser62 phosphorylation is increased. A phospho-mimic mutation at Ser62 enhanced the formation of the FLCN–AMPK complex. These results suggest that function(s) of FLCN–AMPK–FNIP complex is regulated by Ser62 phosphorylation.

1. Introduction
Birt–Hogg–Dubé syndrome (BHDS) is an autosomal dominantly inherited syndrome and is characterized by the development of skin fibrofolliculomas and spontaneous pneumothorax, in addition to kidney cancers with chromophobic or oncocytic features [1]. The responsible gene for BHDS (BHD) is a tumor suppressor and has been identified by positional cloning [2]. We identified a germline mutation of the BHD homologue (Bhd) in the Nihon rat model of hereditary renal carcinoma [3].

To better understand the molecular mechanism of tumorgenesis caused by BHD/Bhd-deficiency, it is necessary to elucidate the function of BHD product (folliculin, FLCN). However, the physiological activity of FLCN has not yet been determined. Baba et al. identified an FLCN-binding protein, FNIP1, and demonstrated that FLCN is phosphorylated [4]. They also reported that FNIP1 binds 5′-AMP-activated protein kinase (AMPK), and that both FLCN and FNIP1 are phosphorylated by AMPK [4]. Phosphorylations of FLCN were influenced by treatment with an AMPK inhibitor, as well as rapamycin or by amino acid deprivation [4]. Our group and Hasumi et al. identified the second FLCN-binding protein, FNIP2/FNIPL, which is

Abbreviations: AMPK, 5′-AMP-activated protein kinase; FLCN, folliculin; FNIP, FLCN-interacting protein
* Corresponding author. Address: Department of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan. Fax: +81 356841646. E-mail address: ohino@juntendo.ac.jp (O. Hino).
Phosphatase (CIAP, Takara). Beads were resuspended in 100 mM TBST, then washed once with the buffer for calf intestinal alkaline phosphatase treatment and metabolic labeling

2. Materials and methods

2.1. General methods

For general methods (plasmid construction, cell culture, transfection, immunoblot analysis and immunoprecipitation), see Supplementary materials and methods.

2.2. Phosphatase treatment and metabolic labeling

Protein A/G beads (Calbiochem) with immunocomplex were washed three times with 0.5% Tween 20/Tris-buffered saline (TBST), then washed once with the buffer for calf intestinal alkaline phosphatase (CIAP, Takara). Beads were resuspended in 100 μl of CIAP buffer and treated with CIAP (80 units) for 20 min and then washed three times with TBST and subjected to further analysis. For metabolic labeling, Cos7 cells were transfected with plasmids for Flag-tagged proteins. After 48 h of culture, the medium was changed to phosphate-free DMEM (Gibco) supplemented with 10% dialyzed FBS (Gibco) and cells were incubated for 30 min. Then, 32P-orthophosphate (GE Healthcare) was added to the medium (0.1 μCi/ml) and cells were labeled for 4 h and lysed for immunoprecipitation with anti-Flag antibody to detect 32P incorporation.

2.3. Mass spectrometric analysis

Cos7 cells expressing FLCN-GST were lysed on ice in NP40 lysis buffer [6]. The lysate was mixed with Glutathione-Sepharose 4B beads (GE Healthcare) overnight at 4°C and bound proteins were separated by a 10% SDS–PAGE and then visualized by silver staining. The FLCN bands were in-gel digested as previously described [9]. The tryptic peptides were extracted, the solvent was evaporated, and the peptides were redissolved in 10 μl of 1% formic acid. Mass spectrometry was performed using API-QSTAR pulsar i (Applied Biosystems) with a nanoliquid chromatograph (DiNa; KVA TECH Corporation) equipped with a 0.2 mm ID × 50 mm Magic C18 column. Amino acid sequences of the tryptic peptides were determined by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS).

2.4. Antibodies

Anti-phospho-FLCN (S62) was generated by immunizing rabbits with S62-phosphorylated peptide corresponding to aa 59–68 (Arg-Ala-His-Ser-Pro-Ala-Glu-Gly-Ala-Ser) of rat FLCN with amino-terminal cysteine for conjugation with haemocyanine (IBL). Antibodies were purified by antigen-affinity chromatography (IBL). For other antibodies, see the Supplementary materials and methods.

2.5. In vitro kinase assays

Cos7 cells expressing GST-tagged proteins were lysed on ice in NP40 lysis buffer. The proteins were purified with Glutathione-Sepharose 4B beads and treated with CIAP as described above and then the beads were incubated with or without active AMPKα1 subunit (Cell Signaling) in a solution containing 60 mM HEPES–NaOH, pH 7.5, 3 mM MgCl2, 3 mM MnCl2, 1 mM DTT, 0.5 μg/μl PEG20.000, 100 μM ATP and 1 μCi/μl γ32P-ATP (NEG002A; Perkin Elmer) at 30°C for 20 min. The samples were subjected to SDS–PAGE and transferred to the nylon membrane, and then incorporation of 32P was examined by autoradiography. In another system, in vitro kinase assay for AMPKα1 was performed using His–FLCN fragments as substrates. Proteins on nylon membrane were visualized by immunoblot with alkaline phosphatase conjugated secondary antibodies using the substrate, nitro-blue-tetrazolium and 5-bromo-4-chloro-3-indolylphosphate (WAKO).

3. Results and discussion

3.1. Ser62 is a phosphorylation site in FLCN

During a previous study, which we conducted for the identification of the Bhd germline mutation, we observed that rat FLCN migrated as multiple bands in immunoblot analysis [4]. By using deletion mutants and metabolic labeling, it was suggested that the migration of FLCN was affected by phosphorylation in the amino-terminal region and that rat FLCN has multiple phosphorylation sites (Supplementary Fig. S1).

To identify the phosphorylation site in the amino-terminal region, we employed site-directed mutagenesis for candidate residues and examined its effects on the mobility of amino-terminal fragment (ΔC-ter) in immunoblot after transient expression in Cos7 cells. Among the mutations introduced, only the Ser62 (S62)-to-alanine (S62A) mutation completely eliminated slower migrated bands in ΔC-ter (Fig. 1A and data not shown). It did not completely abolish 32P incorporation in metabolic labeling, suggesting that other phosphorylation sites are present (Fig. 1A). Next, we searched for phosphorylation sites in the transiently expressed full-length FLCN–GST fusion protein by tandem mass spectrometry and a peptide phosphorylated at S62 was identified (Fig. 1B). In this analysis, no other phospho-peptide was detected.

To further analyze the FLCN phosphorylation at S62, we prepared a rabbit polyclonal antibody (BHD-P1) specific for the phospho-S62-containing FLCN peptide. We first found that BHD-P1 efficiently reacted with transiently expressed wild-type but not S62A mutant FLCN, in an upper band-specific manner (Supplementary Fig. S2B). These results suggested that BHD-P1 recognizes FLCN phosphorylated at S62. We tested and found the reactivity of BHD-P1 was totally abolished by pre-treatment of antibody with phosphorylated antigen peptides, but not with control unphosphorylated peptides (Supplementary Fig. S2A).

In addition, the reactivity of BHD-P1 was totally abolished by pre-treatment of FLCN with alkaline phosphatase (Supplementary Fig. S2B). These results suggested that BHD-P1 recognizes FLCN phosphorylated at S62. We tested and found the reactivity of BHD-P1 to endogenous FLCN from human, mouse and rat cell lines (Supplementary Fig. S2C and data not shown). Taking these results together, we concluded that FLCN is phosphorylated at S62 in vivo.

S62 and its surrounding region are conserved in terrestrial animal-specific manner (data not shown). As BHDS develops renal homologous to FNIP1 [5,6]. The level of FLCN, FNIP1 or FNIP2/FNIPL expression influenced the signaling pathway regulated by mammalian target of rapamycin kinase (mTOR), probably in a context-dependent manner [4–6]. From these observations, it has been suggested that FLCN is involved in energy and nutrient sensing through the AMPK and mTOR signaling pathways [4].

The rapamycin-sensitive function of mTOR is negatively regulated by AMPK and tuberous sclerosis tumor suppressor gene products (hamartin and tuberin) [7]. From the study of yeast mutants of the BHD homologue, opposite roles of FLCN and tuberin in TOR signaling have been suggested [8]. Thus, there may be a complex network of tumor suppressors involved in the regulation of mTOR. Detailed characterization of FLCN phosphorylation will provide important information that might allow us to clarify the function of FLCN in such a network.
and/or pulmonary lesions, this conservation is interesting for us in terms of the species-specific as well as the tissue (respiratory or renal)-specific regulation of FLCN function.

3.2. Ser62 of FLCN is phosphorylated in the AMPK-related pathway, but is not a direct target of AMPK

We have detected an increase in the amount of slowly migrated bands of FLCN after co-expression with α1-subunit of AMPK, as well as several other kinases (Fig. 2A and B, and data not shown). Accordingly, the reactivity of FLCN protein with BHD-P1 was increased by co-expression of AMPK α1. This reactivity was partially reduced in FLCN cells treated with an AMPK inhibitor (Compound C), but not with rapamycin, suggesting that the regulatory pathways for FLCN phosphorylation at Ser62 involve AMPK (Fig. 2A and B).

To determine whether Ser62 is directly phosphorylated by AMPK, we performed in vitro kinase assays in two different systems. Both wild-type and Ser62A mutant Flag–FLCN–GST fusion proteins, purified from Cos7 cells, were treated with anti-Flag antibody (upper panel). Arrows indicate two major bands of wild-type FLCN. 32P-incorporation was detected by autoradiography after immunoprecipitation with anti-Flag antibody (lower panel). Note that the upper band was not detected and that the total intensity was diminished in the Ser62A mutant. These data suggest that Ser62 of FLCN is not directly phosphorylated by AMPK in vitro (Fig. 2D). Thus, the short amino-terminal and carboxy-terminal GST fusion may not perturb phosphorylation by AMPK in vitro.

To elucidate the functional significance of Ser62 phosphorylation, we tested the activity of Ser62 mutant FLCN to form a complex with AMPK, FNIP1 and FNIP2/FNIPL [4–6]. When co-expressed with FNIP proteins, wild-type FLCN showed an increase in the amount of Ser62-phosphorylated form, consistent with previously reported results [4–6]. This suggests that phosphorylation at Ser62 is induced or stabilized by FNIP proteins. The increase in Ser62 phosphorylation by FNIP proteins was suppressed by Compound C, but not by rapamycin, suggesting that it is exerted by an AMPK-dependent mechanism (Fig. 3A). In the co-immunoprecipitation assay, both Ser62A and a phosphorylation-mimic serine-to-aspartic acid (Ser62D) mutants exhibited no significant change in the ability to bind FNIP proteins (Supplementary Fig. S4). Although the formation of a complex between FLCN and AMPKα1 was reported to be FNIP1-dependent, we detected their interaction in transient co-expression without FNIP1 expression (Fig. 3B). In the co-immunoprecipitation assay, the Ser62D mutant exhibited increased binding activity with AMPKα1 whereas the Ser62A mutant showed slightly reduced one compared with wild-type FLCN (Fig. 3B). These results suggest that FLCN phosphorylation at Ser62 may enhance or stabilize the formation of a complex in which AMPKα1 and FLCN are involved.
Overall, the binding of FLCN with FNIP proteins may increase the FLCN–AMPK \( a_1 \) complex via S62 phosphorylation. This may upregulate the direct phosphorylation of FLCN by AMPK \( a_1 \) at residue(s) other than S62. There may be complex mechanisms for FLCN phosphorylation in the AMPK and mTOR-related pathways. Phosphorylated FLCN–specific antibodies, such as BHD-P1, which were generated in this study, will be powerful tools for future studies. To unravel the molecular mechanism of tumorigenesis associated with BHD mutation, understanding of FLCN function is necessary. Further studies on the regulatory mechanism of FLCN phosphorylation will provide many important clues.

Acknowledgements

We thank Dr. N. Oshiro (Kobe University) and Dr. T. Maeda (Tokyo University) for their advices on experiments and Dr. M. Maeda (IBL) for antibody preparation. This work was supported by the Research Institute for Diseases of Old Age of the Juntendo University, a Grant-in-Aid for Cancer Research from the Ministry of Education, Culture, Sports, Science and Technology and Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) and the Ministry of Health, Labour and Welfare.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.febslet.2009.11.033.
References


